Acta Chir Orthop Traumatol Cech. 2011; 78(4):328-333 | DOI: 10.55095/achot2011/050

Matematický model biomechanického pozadí osteodegenerativního procesu krčního obratlePůvodní práce

P. BARSA1,2,*, J. NOVÁK1, T. SOUČEK1, F. MARŠÍK3, P. SUCHOMEL2
1 Ústav nových technologií a aplikované informatiky, Fakulta mechatroniky a mezioborových inženýrských studií, Technická univerzita Liberec
2 Neurochirurgické oddělení, Neurocentrum, Krajská nemocnice Liberec
3 Ústav termomechaniky, České akademie věd, Praha

PURPOSE OF THE STUDY:
The aim of this study was to simulate different types of cervical vertebra loading and to find out whether mechanical stress would concentrate in regions known in clinical practice as predilection sites for osteophyte formation. The objective was to develop a theoretical model that would elucidate clinical observations concerning the predilection site of bone remodelling in view of the physiological changes inside the cervical vertebral body.

MATERIAL AND METHODS:
A real 3D-geometry of the fourth cervical vertebra had been made by the commercially available system ATOS II. This is a high-resolution measuring system using principles of optical triangulation. This flexible optical measuring machine projects fringe patterns on the surface of a selected object and the pattern is observed with two cameras. 3D coordinates for each camera pixel were calculated with high precision and a polygon mesh of the object's surface was further generated. In the next step an ANSYS programme was used to calculate strains and stresses in each finite element of the virtual vertebra. The applied forces used in the experiment corresponded in both magnitude and direction to physiological stress. Mechanical loading in neutral position was characterized by a distribution of 80% mechanical stress to the vertebral body and 10% to each of the zygoapophyseal joints. Hyperlordotic loading was simulated by 60% force transfer to the vertebral body end-plate and 20% to each of the small joint while kyphotic loading involved a 90% load on the vertebral body end-plate and 5% on each facet.

RESULTS:
Mechanical stress distribution calculated in a neutral position of the model correlated well with bone mineral distribution of a healthy vertebra, and verified the model itself. The virtual mechanical loading of a vertebra in kyphotic position concentrated deformation stress into the uncinate processes and the dorsal apophyseal rim of the vertebral body. The simulation of mechanical loading in hyperlordosis, on the other hand, shifted the region of maximum deformation into the articulation process of the Z-joint. All locations are known as areas of osteophyte formation in degenerated cervical vertebrae.

DISCUSSION: AND CONCLUSIONS
The theoretical model developed during this study corresponded well with human spine behaviour in terms of predilection sites for osteodegenerative changes, as observed in clinical practice. A mathematical simulation of mechanical stress distribution in pre-operative planning may lead to the optimisation of post-operative anatomical relationship between adjacent vertebrae. Such improvement in our surgical practice may further reduce the incidence of degenerative changes in adjacent motion segments of the cervical spine and possibly also lead to better subjective and clinical results after cervical spine reconstruction.

Klíčová slova: cervical vertebra, bone remodelling, kyphosis, lordosis, spondylosis, osteophyte

Zveřejněno: 1. srpen 2011  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BARSA P, NOVÁK J, SOUČEK T, MARŠÍK F, SUCHOMEL P. Matematický model biomechanického pozadí osteodegenerativního procesu krčního obratle. Acta Chir Orthop Traumatol Cech. 2011;78(4):328-333. doi: 10.55095/achot2011/050. PubMed PMID: 21888843.
Stáhnout citaci

Reference

  1. CULLINANE, D. M.: The role of osteocytes in bone regulation: mineral homeostasis versus mechanoreception. J. Musculoskelet Neuronal Interact., 2: 242-244, 2002.
  2. DMITRIEV, A. E., CUNNINGHAM, B. W., HU, N., SELL, G., VIGNA, F., McAFEE P. C.: Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty. Spine, 30: 1165-1172, 2005. Přejít k původnímu zdroji... Přejít na PubMed...
  3. FROST, H.M.: A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod., 74: 3-15, 2004. Přejít k původnímu zdroji...
  4. HILIBRAND, A. S., CARLSON, G. D., PALUMBO, M. A., JONES, P. K., BOHLMAN, H. H.: Radiculopathy and myelopathy at segmental adjacent to the site of a previous anterior cervical arthrodesis. J. Bone Jt Surg., 81-A: 519-528, 1999. Přejít k původnímu zdroji... Přejít na PubMed...
  5. KATSUURA, A., HUKUDA, S, SARUHASHI, Y., MORI. K: Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur. Spine J., 10: 320-324, 2001. Přejít k původnímu zdroji... Přejít na PubMed...
  6. KAWAKAMI, M., TAMAKI, T., YOSHIDSA, M., HAYASHI, N., ANDO, M., YAMADA, H.: Axial symptoms and cervical alignments after cervical anterior spinal fusion for patients with cervical myelopathy. J. Spinal Disord., 12:50-56, 1999. Přejít k původnímu zdroji... Přejít na PubMed...
  7. KOVANDA, M., HAVLÍČEK, V., HUDEC, J.: Výpočtové modelování mechanických interakcí dříků Poldi-Cech, CF-30, MS-30 a PFC s cementem a kostní tkání. Acta Chir. orthop. Traum. čech., 76: 110-115, 2009. Přejít k původnímu zdroji...
  8. LANGOVÁ, K., GALLO, J.: Je Kaplan-Meierova statistika nejvhodnější metodou k hodnocení přežívání výsledku v ortopedii? Acta Chir. orthop. Traum. čech., 77: 118-123, 2010. Přejít k původnímu zdroji...
  9. MÜLLER-GERBL, M., WEISSER, S., LINSENMEIER, U.: The distribution of mineral density in the cervical vertebral endplates. Eur. Spine J., 17:432-438, 2008. Přejít k původnímu zdroji... Přejít na PubMed...
  10. NATHAN, M., POPE, M. H., GROBLER, L. J.: Osteophyte formation in the vertebral column: a review of the etiologic factors-Part II. Contemp. Orthop., 29: 113-119, 1994.
  11. ŠRÁMEK, J., ŠTULÍK, J., ŠEBESTA, P., VYSKOČIL, T., KRYL J., NESNÍDAL, P., BARNA, M.: Hyperextenzní poranění krční páteře při spondylóze. Acta Chir. orthop. Traum. čech., 76: 128-132, 2009. Přejít k původnímu zdroji...
  12. ŠTULÍK, J., KLÉZL, Z., ŠEBESTA, P., KRYL, J., VYSKOČIL, T.: Okcipitocervikální fixace: dlouhodobé sledování 57 pacientů. Acta Chir. orthop. Traum. čech., 76: 479-486, 2009. Přejít k původnímu zdroji...
  13. WOLFF, J.: Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald 1892. (English translation: Springer-Verlag 1986).
  14. ZINKIEWICZ, O. C., TAILOR, R. L., ZHU J. Z.: Finite Element Methods - Its Basis and Fundamentals, 6th Edition, Elsevier, 2005.