Acta Chir Orthop Traumatol Cech. 2017; 84(2):133-137 | DOI: 10.55095/achot2017/020
Porovnání rozsahu pohybu reálné krční páteře psa s počítačovou simulací - validace počítačového modeluPůvodní práce
- 1 Klinika chorob psů a koček, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno
- 2 Katedra technických studií, Vysoká škola polytechnická Jihlava
- 3 Ústav mechaniky, biomechaniky a mechatroniky, Fakulta strojní, České vysoké učení technické v Praze
- 4 Klinika chorob koní, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno
- 5 Ortopedicko-traumatologická klinika, Fakultní nemocnice Královské Vinohrady, Praha
PURPOSE OF THE STUDY:
In developing new or modifying the existing surgical treatment methods of spine conditions an integral part of ex vivo experiments is the assessment of mechanical, kinematic and dynamic properties of created constructions. The aim of the study is to create an appropriately validated numerical model of canine cervical spine in order to obtain a tool for basic research to be applied in cervical spine surgeries. For this purpose, canine is a suitable model due to the occurrence of similar cervical spine conditions in some breeds of dogs and in humans. The obtained model can also be used in research and in clinical veterinary practice.
MATERIAL AND METHODS:
In order to create a 3D spine model, the LightSpeed 16 (GE, Milwaukee, USA) multidetector computed tomography was used to scan the cervical spine of Doberman Pinscher. The data were transmitted to Mimics 12 software (Materialise HQ, Belgium), in which the individual vertebrae were segmented on CT scans by thresholding. The vertebral geometry was exported to Rhinoceros software (McNeel North America, USA) for modelling, and subsequently the specialised software Abaqus (Dassault Systemes, France) was used to analyse the response of the physiological spine model to external load by the finite element method (FEM). All the FEM based numerical simulations were considered as nonlinear contact statistic tasks. In FEM analyses, angles between individual spinal segments were monitored in dependence on ventroflexion/dorziflexion.
The data were validated using the latero-lateral radiographs of cervical spine of large breed dogs with no evident clinical signs of cervical spine conditions. The radiographs within the cervical spine range of motion were taken at three different positions: in neutral position, in maximal ventroflexion and in maximal dorziflexion. On X-rays, vertebral inclination angles in monitored spine positions were measured and compared with the results obtained from FEM analyses of the numerical model.
RESULTS:
It is obvious from the results that the physiological spine model tested by the finite element method shows a very similar mechanical behaviour as the physiological canine spine. The biggest difference identified between the resulting values was reported in C6-C7 segment in dorsiflexion (Δφ = 5.95%), or in C4-C5 segment in ventroflexion (Δφ = -3.09%).
CONCLUSIONS:
The comparisons between the mobility of cervical spine in ventroflexion/dorsiflexion on radiographs of the real models and the simulated numerical model by finite element method showed a high degree of results conformity with a minimal difference. Therefore, for future experiments the validated numerical model can be used as a tool of basic research on condition that the results of analyses carried out by finite element method will be affected only by an insignificant error. The computer model, on the other hand, is merely a simplified system and in comparison with the real situation cannot fully evaluate the dynamics of the action of forces in time, their variability, and also the individual effects of supportive skeletal tissues. Based on what has been said above, it is obvious that there is a need to exercise restraint in interpreting the obtained results.
Klíčová slova: cervical spine, kinematics, numerical modelling, finite element method, canine
Zveřejněno: 1. duben 2017 Zobrazit citaci
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Reference
- Agnello KA, Kapatki AS, Garci TC, Hayash K, Welihozkiy AT, Stover SM. Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine. Vet Surg. 2010;39:991-1000.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Akbarian D, Rouhi G, Mashhadi MM, Herzog W. Biomechanics of cervical spine following implantation of a semi-constrained artificial disc with upward center of rotation: a finite element investigation. J Mech Med Biol. 2015;15: doi: 10 1142/S0219519415500633.
Přejít k původnímu zdroji...
- Bauer S, Buchholz U. Biomechanical effects of spinal fusion to adjacent vertebral segments UKSIM-AMSS Seventh European Modelling Symposium on Computer Modelling and Simulation (EMS 2013). 2013;28,158-163.
Přejít k původnímu zdroji...
- Bauer S, Hausen U, Grube, K. Effects of individual spine curvatures - a comparative study with the help of computer modelling. Biomed Tech. 2012;57: DOI 10 1515/bmt-2012-4052.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Da Costa RC. Cervical Sspondylomyelopathy (Wobbler syndrome) in dogs. Vet Clin North Am Small Anim Pract. 2010;40:881-913.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Hettlich BF, Allen J, Glucksma, GS, Fosgate GT, Litsky AS. Effect of an intervertebral disk spacer on stiffness after monocortical screw/polymethylmethacrylate fixation in simulated and cadaveric canine cervical vertebral columns. Vet Surg. 2014;43:988-994.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Hofstetter M, Gédet P, Doherr M, Ferguson SJ, Forterre F. Biomechanical analysis of the three-dimensional motion pattern of the canine cervical spine segment C4-C5. Vet Surg. 2009;38:49-58.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Chen Y, Pani M, Taddei F, Mazza C, Li, X, Vicencont, M. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data: a convergence study. J Biomech Eng. 2014;136:101013.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Jirman R, Horak Z, Bouda T, Mazanek J, Reznicek J. Influence of the method of TM joint total replacement implantation on the loading of the joint on the opposite side. Comp Meth Biomech Biomed Eng. 2011;14:673-681.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Johnson JA, Da Costa RC, Bhattacharya S, Goel V, Allen MJ. Kinematic motion patterns of the cranial and caudal canine cervical spine. Vet Surg. 2011;40:720-727.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Keller T. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27:1159-1168.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Les C, Keyak J, Stover S, Taylor K, Kaneps A. Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthop Res. 1994;12:822-833.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Moissonnier P, Desquilbet L, Fitzpatrick D, Berdard F. Radiography and biomechanics of sixth and seventh cervical vertebrae segments after disc fenestration and after insertion of an intervertebral body spacer. A canine cadaveric study. Vet Comp Orthop Traumatol. 2014;27:54-61.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Necas A, Urbanova L, Furst T, Zencak P, Tucek P. Mathematical modelling of crack fractography after implant failure of titanium 4.5 LCP used for flexible bridging osteosynthesis in a miniature pig. Acta Vet Brno. 2010;79:621-626.
Přejít k původnímu zdroji...
- Smit TH. The use of a quadruped as an in vivo model for the study of the spine - biomechanical considerations. Eur Spine J. 2002;11:137-144.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Srnec R, Proks P, Fedorova P, Stehlik L, Dvorak M, Necas A. Myelographic diagnosis and results of surgical treatment of caudal cervical spondylomyelopathy in dogs: a retrospective study (2000-2010). Acta Vet Brno. 2012;81:415-420.
Přejít k původnímu zdroji...
- Troyera KL, Puttlitz, CM. Nonlinear viscoelasticity plays an essential role in the functional behavior of spinal ligaments. J Biomech. 2012;45:684-691.
Přejít k původnímu zdroji...
Přejít na PubMed...
- Urbanova L, Blazek-Fialova I, Srnec R, Pencik J, Krsek P, Necas A. Mathematical model of mechanical testing of bone-implant (4.5 mm LCP) construct. Acta Vet Brno. 2012;81: 211-215.
Přejít k původnímu zdroji...