Acta Chir Orthop Traumatol Cech. 2011; 78(6):528-536 | DOI: 10.55095/achot2011/084

Treatment of a Bone Bridge by Transplantation of Mesenchymal Stem Cells and Chondrocytes in a Composite Scaffold in Pigs. Experimental StudyOriginal papers

L. PLÁNKA1,*, A. NEČAS2, M. CRHA2, P. PROKS2, L. VOJTOVÁ3, P. GÁL1
1 Klinika dětské chirurgie, ortopedie a traumatologie, Fakultní nemocnice Brno
2 Klinika chorob psů a koček, Veterinární a farmaceutická fakulta v Brně
3 Ústav chemie materiálů, Fakulta chemická, Vysoké učení technické v Brně

PURPOSE OF THE STUDY:
The presented experimental study describes the results of using a combination of allogeneic mesenchymal cells (MSCs) with chondrocytes (CHCs) and a novel scaffold based on type I collagen and chitosan fibres. This biocomposite was transplanted into a defect produced by excision of a bone bridge to induce new cartilaginous tissue formation. The left femur was treated by transplantation into a defect of distal epiphysis; the right femur with implantation of the scaffold only served as control. A better therapeutic result was therefore expected in the left femur - the reduction of growth and angular deformities, and the histological finding of a tissue similar to the cartilage excised from the left femur.

MATERIAL AND METHODS:
The miniature pig was selected as an experimental model and 10 pigs were used. Mesenchymal stem cells derived from femoral bone marrow and chondrocytes derived from a sample harvested from the non-weight-bearing articular surface of the distal end of the femur were cultured in medium. The novel scaffold was based on collagen containing chitosan nanofibres. To make manipulation during implantation easier, the cilindrical scaffolds after lyophilisation were again placed in 96-well plates for seeding. The scaffolds before implantation were seeded with 2x106 allogeneic MSCs and 1x106 allogeneic CHCs. The outcomes of treatment were assessed by measuring the length of bone and the degree of distal femoral valgus deformity, and by the histological findings obtained (properties and maturity of the newly-formed tissue, detection of type II collagen, PAS reaction).

RESULTS:
The right and left legs were examined for longitudinal bone growth and the valgus angle and compared. The treated left leg showed a higher average value for longitudinal growth than the untreated right leg (p = 0.004). The average degree of angular deformity was lower in the left leg than in the right leg (p = 0.008). The microscopic findings showed that a tissue similar to hyaline cartilage was more frequently present in the femoral bone defect of the left leg, as compared with that of the right leg. Type II collagen was detected more frequently and at higher amounts on the left than the right side (p = 0.033). The PAS reaction was positive in all left limbs, with a high degree of positivity in 80 % of them, while this was not achieved in any of the right limbs (p = 0.001).

DISCUSSION:
The use of stem cells in the indication reported here has only been the matter of time since the information on encouraging results in neurology and cardiology was published. First studies with positive results have soon been reported. The initial hydrogel scaffolds were based on tissue adhesives. However, they were not stable enough and were difficult to handle during surgery. In further studies, therefore, the use was made of a three-dimensional scaffold with a self-supporting structure of collagen fibres. This structure also facilitated its hydrodynamic seeding with MSCs and CHCs, which is an effective and sparing procedure for the transplanted cells. Studies concerned with MSCs and/or CHCs transplantation for repair of a physeal defect following bone bridge excision, i.e. for bone bridge treatment, in a broader experimental design, however, are still missing.

CONCLUSION:
Transplantation of a composite scaffold seeded with mesenchymal stem cells and chondrocytes into a physeal defect following bone bridge excision prevented growth disturbance and angular deformity development in the distal femoral epiphysis. In comparison with the control group, it resulted in a more frequent production of a tissue similar to hyaline cartilage, with a cell formation reminiscent of a typical columnar arrangement of the growth plate.

Keywords: mesenchymal stem cells, growth plate, bone bridge, scaffold

Published: December 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
PLÁNKA L, NEČAS A, CRHA M, PROKS P, VOJTOVÁ L, GÁL P. Treatment of a Bone Bridge by Transplantation of Mesenchymal Stem Cells and Chondrocytes in a Composite Scaffold in Pigs. Experimental Study. Acta Chir Orthop Traumatol Cech. 2011;78(6):528-536. doi: 10.55095/achot2011/084. PubMed PMID: 22217406.
Download citation

References

  1. AHN, J. I., CANALE, T. S., BUTLER, S. D., HASTY, K. A.: Stem cell repair of physeal cartilage. J. Orthop. Res., 22:1215-1221, 2004. Go to original source... Go to PubMed...
  2. AKAVIA, U. D., VEINBLAT, O., BENAYAHU, D.: Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells, J. Cell. Physiol., 216: 663-672, 2008. Go to original source... Go to PubMed...
  3. BROUGHTON, N. S., DICKENS, O. R. V., COLE, W. G., MENELAUS, M. B.: Epiphysiolysis for partial growth plate arrest. J. Bone Jt Surg., 71-B: 13-16, 1989. Go to original source... Go to PubMed...
  4. CHEN, J.L., YIN, Z., SHEN, W. L. A.: Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials, 31: 9438-9451, 2010. Go to original source... Go to PubMed...
  5. FILOVÁ, E., RAMPICHOVÁ, M., HANDL, M., LYTVYNETS, A., HALOUZKA, R., USVALD, D., HLUČILOVÁ, J., PROCHÁZKA, R., DEZORTOVÁ, M., ROLENCOVÁ, E., KO©«ÁKOVÁ, E., TRČ, T., ©«ASTNÝ, E., KOLÁČNÁ, L., HÁJEK, M., MOTLÍK, J., AMLER, E.: Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs. Physiol. Res., 56: S5-S16, 2007. Go to original source... Go to PubMed...
  6. GÁL, P., NEČAS, A., PLÁNKA, L., KECOVÁ, H., KŘEN, L., KRUPA, P., HLUČILOVÁ, J., USVALD, D.: Chondrocytic potential of allogenic mesenchymal stem cells transplanted without immunosuppression to regenerate physeal defect in rabbits. Acta Vet. Brno. 76: 265-275, 2007. Go to original source...
  7. GÁL, P., ONDRU©, ©., ©KVAŘIL, J., STRAKA, M., JOCHYMEK, M., PLÁNKA, L.: Syntetický biokompatibilní degradabilní materiál v léčbě juvenilních kostních cyst. Acta Chir. orthop. Traum. čech., 76: 495 - 500, 2009. Go to original source...
  8. GAO, J., YAO, J. Q., CAPLAN, A. I.: Stem cells for tissue engineering of articular cartilage. Proc. IMechE. 221: 441-450, 2007. Go to original source... Go to PubMed...
  9. GUO, X., WANG, C. H., ZHANG, Y., XIA, R., HU, M., DUAN, C., ZHAO, Q., DONG, L., LU, J., SONG, Y.: Repair of Large Articular Cartilage Defects with Implants of Autologous Mesenchymal Stem Cells Seeded into -Tricalcium Phosphate in a Sheep Model. Tissue Eng. 10: 1818-1829, 2004. Go to original source... Go to PubMed...
  10. HANDL, M., TRČ, T., HANU©, M., ©«ASTNÝ, E., FRICOVÁ-POULOVÁ, M., NEUWIRTH, J., ADLER, J., HAVRANOVÁ, D., VARGA, F.: Transplantace kultivovaných autologních chondrocytů hlezenného kloubu. Acta Chir. orthop. Traum. čech., 74: 29, 2007. Go to original source...
  11. HUI, J. H. P., LI, L., TEO, Y. H., OUYANG, H. W., LEE, E. H.: Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit. Tissue Eng., 11: 904-912, 2005. Go to original source... Go to PubMed...
  12. JANARV, P. M., WIKSTRÖM, B., HIRSCH, G.: The influence of transphyseal drilling and tendon grafting on bone growth: an experimental study in the rabbit. J. Pediatr. Orthop. 18: 149-154, 1998. Go to original source...
  13. JANČÁŘ, J., SLOVIKOVA, A., AMLER, E., KRUPA, P., KECOVÁ, H., PLÁNKA, L., GÁL, P., NEČAS, A.: Mechanical response of porous scaffolds for cartilage engineering. Physiol. Res., 56: S17-S25, 2007. Go to original source... Go to PubMed...
  14. JANČÁŘ, J., VOJTOVÁ, L., NEČAS, A., SRNEC, R., URBANOVÁ, L., CRHA, M.: Stability of Collagen Scaffold Implants for Animals with Iatrogenic Articular Cartilage Defects. Acta Vet. Brno, 78:643-U107, 2009. Go to original source...
  15. JOCHYMEK, J., ©KVAŘIL, J., ONDRU©, ©.: Analysis of the results of bone healing in femurs lengthened by the gradual distraction method in children and adolescents. Acta Chir. orthop. Traum. čech., 76: 399-403, 2009. Go to original source...
  16. JU, W., HOFFMANN, A., VERSCHUEREN, K., TYLZANOWSKI, P., KAPS, C., GROSS, G., HUYLEBROECK, D.: The bone morphogenetic protein 2 signaling mediator Smad1 participates predominantly in osteogenic and not in chondrogenic differentiation in mesenchymal progenitors C3H10T1/2. J. Bone Miner. Res. 15: 1889-1899, 2000. Go to original source... Go to PubMed...
  17. KAPS, C., BRAMLAGE, C., SMOLIAN, H., HAISCH, A., UNGETHUM, U., BURMESTER, G., SITTINGER, M., GROSS, G., HAUPL, T.: Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum., 46: 149-162, 2002. Go to original source...
  18. KIM, T. K., SHARMA, B., WILLIAMS, C. G., RUFFNER, M.A., MALIK, A., MCFARLAND, E. G., ELISSEEFF, J. H.: Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartil., 11: 653-664, 2003. Go to original source... Go to PubMed...
  19. KLASSEN, R. A., PETERSON, M. A.: Excision of physeal bars: The Mayo Clinic experience 1968-1978. Orthop. Trans., 2: 65, 1982.
  20. LANGENSKIOLD, A.: An operation for partial closure of an epiphyseal plate in children, and its experimental basis. J. Bone Jt Surg., 57-B: 325-330, 1975. Go to original source...
  21. LANGENSKIOLD, A.: Surgical treatment of partial closure of the growth plate. J. Pediatr. Orthop., 11: 3-11, 1981. Go to original source... Go to PubMed...
  22. LEE, E. H., GAO, G. X., BOSE, K.: Management of partial growth arrest: physis, fat, or Silastic? J. Pediatr. Orthop., 13: 368-72, 1993. Go to original source... Go to PubMed...
  23. LI, W. J., TULI, R., OKAFOR, C., DERFOUL, A., DANIELSON, K. G., HALL, D. J., TUAN, R. S.: A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26: 599-609, 2005. Go to original source... Go to PubMed...
  24. LIND, M., LARSEN, A., CLAUSEN, C., OSTHER, K., EVERLAND, H.: Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg. Sports Traumatol. Arthrosc., 16: 690-698, 2008. Go to original source... Go to PubMed...
  25. MACKAY, A. M., BECK, S. C., MURPHY, J. M., BARRY, F. P., CHICHESTER, C. O., PITTENGER, M. F.: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng., 4: 415-428, 1998. Go to original source... Go to PubMed...
  26. MACKSOUD, W. S., BRIGHT, R.: Bar resection and siIastic interposition in distal radial physeal arrest. Orthop. Trans. 13: 1-2, 1989.
  27. MARTIANA, K., LOW, C. K., TAN, S. K., PANG, M. W.: Comparison of various interpositional materials in the prevention of transphyseal bone bridge formation. Clin. Orthop. 325: 218-24, 1996. Go to original source... Go to PubMed...
  28. MIURA, Z., PARVIZI, J., FITZSIMMONS, J. S., O'DRISCOLL, S.W.: Brief exposure to high-dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report. J. Bone Joint Surg., 84-A: 793-799, 2002. Go to original source... Go to PubMed...
  29. NEUBAUER, T., RITTER, E., POTSCHKA, T., KARLBAUER, A., WAGNER, M. Retrográdní hřebování u zlomenin femuru. Acta Chir. orthop. Traum. čech., 75: 158-166, 2008. Go to original source...
  30. O'DRISCOLL, S. W., KEELEY, F. W., SALTER, R. B.: Durability of regenerated articular cartilage produced by free autologous periosteal graft in major full-thickness defects in joint surfaces under the influence of continuous passive motion. J. Bone Jt Surg., 70-A: 595, 1988. Go to original source...
  31. PLÁNKA, L., NEČAS, A., GÁL, P., KECOVÁ, H., FILOVÁ, E., KŘEN, L., KRUPA, P.: Prevention of bone bridge formation using transplantation of the autogenous mesenchymal stem cells to physeal defects: An experimental study in rabbits. Acta Vet. Brno, 76: 253-263, 2007. Go to original source...
  32. PLÁNKA, L., NEČAS, A., SRNEC, R., RAU©ER, P., STARÝ, D., JANČÁŘ, J., AMLER, E., FILOVÁ, E., HLUČILOVÁ, J., KŘEN, L., GÁL, P.: Use of allogenic stem cells for the prevention of bone bridge formation in miniature pigs. Physiol. Res. 58: 885-893, 2009. Go to original source... Go to PubMed...
  33. PLÁNKA, L., STARÝ, D., HLUČILOVÁ, J., KLÍMA, J., JANČÁŘ, J., KŘEN, L., LORENZOVÁ, J., URBANOVÁ, L., CRHA, M., SRNEC, R., DVOŘÁK, M., GÁL, P., NEČAS A.: Comparison of Preventive and Therapeutic Transplantation of Allogeneic Mesenchymal Stem Cells in Healing of the Distal Femoral Growth Plate Cartilage Defects in Miniature Pigs. Acta Vet. Brno, 78: 293-302, 2009. Go to original source...
  34. PLÁNKA, L., CHALUPOVÁ, P., CHARVÁTOVÁ, M., POUL, J., GÁL, P. Rotační deformity při pouľití metody ESIN u zlomenin diafýzy stehenní kosti u dětí sledované magnetickou rezonancí. Acta Chir. orthop. Traum. čech., 77: 39-42, 2010. Go to original source...
  35. PORTMANN-LANZ, C. B., SCHOEBEDEIN, A., HUBER, A., SAGER, R., MALEK, A., HOLZGREVE, W., SURBEK, D.V.: Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstetr. Gynaecol., 194: 664-673, 2009. Go to original source... Go to PubMed...
  36. RAMPICHOVA, M., FILOVA, E., VARGA, F., LYTVYNETS, A., PROSECKÁ, E., KOLÁČNÁ, L., MOTLÍK, J., NEČAS, A., VAJNER, L., UHLÍK, J., AMLER, E.: Fibrin/Hyaluronic Acid Composite Hydrogels as Appropriate Scaffolds for In Vivo Artificial Cartilage Implantation. ASAIO J., 56: 563-568, 2010. Go to original source... Go to PubMed...
  37. RUTGERS, M., VAN PELT, M. J. P., DHERT, W. J. A., CREEMERS, L. B., SARIS, D. B. F.: Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthr. Cartil., 18: 12-23, 2010. Go to original source... Go to PubMed...
  38. SLOVIKOVÁ, A., VOJTOVÁ, L., JANČÁŘ, J.: Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap., 62: 417-422, 20008. Go to original source...
  39. TISATO, V., NARESH, K., NAVARRETE, C., DAZZI, F.: Mesenchymal stem cells are effective at preventing but not at treating GvJD. Biol. Blood Marrow Transplant., 13: 44-45, 2007. Go to original source...
  40. WIRTH, T., BYERS, S., BYARD, R. W., HOPWOOD, J. J., FOSTER, B. K.: The implantation of cartilaginous and periosteal tissue into growth plate defects. Int. Orthop., 18: 220-228, 1994. Go to original source... Go to PubMed...
  41. XIAN, C. J., Foster, B. K.: Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene. Curr. Stem Cell Res. Ther., 1: 213-229, 2010. Go to original source... Go to PubMed...